Rabu, 04 Agustus 2010

fisika Gelombang

oleh : Taufik Suhendar

Ketika kita berbicara mengenai gelombang, kita tidak bisa mengabaikan getaran. Getaran dan gelombang mempunyai hubungan yang erat sekali.
Getaran alias osilasi merupakan gerak bolak balik suatu partikel secara periodik di sekitar titik kesetimbangannya ) Terdapat dua contoh umum getaran yang kita temui dalam kehidupan sehari-hari, yakni getaran benda pada pegas dan getaran benda pada ayunan sederhana (contoh getaran benda pada ayunan sederhana adalah getaran bandul).
Getaran yang terjadi pada suatu benda disebabkan oleh adanya gangguan yang diberikan pada benda tersebut. Untuk kasus getaran bandul dan getaran benda pada pegas, gangguan tersebut disebabkan oleh adanya gaya luar (dalam hal ini kita yang menggerakan bandul atau benda pada pegas).
Sebenarnya terdapat banyak contoh getaran yang dapat kita jumpai dalam kehidupan sehari-hari. Garputala bergetar ketika kita memberikan gangguan dengan cara memukul garputala tersebut. Kendaraan akan bergetar ketika mesinnya dinyalakan, dalam hal ini kendaraan tersebut diberi gangguan. Suara yang kita ucapkan tidak akan terdengar apabila pita suara kita tidak bergetar. Seindah apapun alunan musik, jika loudspeaker yang berfungsi sebagai sumber bunyi dan gendang telinga kita sebagai penerima tidak bergetar, maka dapat dipastikan kita tidak akan pernah mendengar musik tersebut.
Setiap gangguan yang diberikan kepada suatu benda akan menimbulkan getaran pada benda tersebut dan getaran ini akan merambat dari suatu tempat ke tampat lain melalui suatu medium tertentu (medium = perantara). Dalam hal ini, peristiwa perambatan getaran dari suatu tempat ke tempat lain melalui suatu medium tertentu disebut gelombang. Dengan kata lain, gelombang merupakan getaran yang merambat dan getaran sendiri merupakan sumber gelombang.
Ketika kita melempar batu ke dalam genangan air yang tenang, gangguan yang kita berikan menyebabkan partikel air bergetar alias berosilasi terhadap titik setimbangnya. Perambatan getaran pada air menyebabkan adanya gelombang pada genangan air tadi. Jika kita menggetarkan ujung tali yang terentang maka gelombang akan merambat sepanjang tali tersebut. Gelombang tali dan gelombang air adalah dua contoh umum gelombang yang dengan mudah kita saksikan dalam kehidupan sehari-hari.
Perlu anda ketahui bahwa ketika melihat gelombang pada genangan air, seolah-olah tampak bahwa gelombang tersebut membawa air keluar dari pusat lingkaran. Atau ketika menyaksikan gelombang laut bergerak ke pantai, mungkin anda berpikir bahwa gelombang membawa air laut menuju ke pantai. Kenyataannya bukan seperti itu. Sebenarnya yang anda saksikan adalah setiap partikel air tersebut berosilasi (bergerak naik turun) terhadap titik setimbangnya. Agar lebih memahami penjelasan gurumuda, alangkah baiknya jika dirimu melakukan percobaan kecil-kecilan. Coba letakan benda yang bisa terapung di atas air yang bergelombang. Dirimu akan mengamati benda tersebut bergerak naik turun pada tempat yang sama. Hal ini menujukkan bahwa gelombang tidak memindahkan air tersebut. Kalau gelombang memindahkan air, maka benda yang terapung juga ikut bepindah. Jadi air hanya berfungsi sebagai medium bagi gelombang untuk merambat.

JENIS-JENIS GELOMBANG
terdapat dua jenis gelombang , yakni gelombang mekanik dan gelombang elektromagnetik. Pembagian jenis gelombang ini didasarkan pada medium perambatan gelombang.
Gelombang Mekanik
Gelombang mekanik merupakan gelombang yang membutuhkan medium untuk berpindah tempat. Gelombang laut, gelombang tali atau gelombang bunyi termasuk dalam gelombang mekanik. Kita dapat menyaksikan gulungan gelombang laut karena gelombang menggunakan laut sebagai perantara. Kita bisa mendengarkan musik karena gelombang bunyi merambat melalui udara hingga sampai ke telinga kita. Tanpa udara kita tidak akan mendengarkan bunyi. Dalam hal ini udara berperan sebagai medium perambatan bagi gelombang bunyi.
Gelombang mekanik terdiri dari dua jenis, yakni gelombang transversal (transverse wave) dan gelombang longitudinal (longitudinal wave).
Gelombang Transversal
Suatu gelombang dapat dikelompokkan menjadi gelombang trasnversal jika partikel-partikel mediumnya bergetar ke atas dan ke bawah dalam arah tegak lurus terhadap gerak gelombang. Contoh gelombang transversal adalah gelombang tali. Ketika kita menggerakan tali naik turun, tampak bahwa tali bergerak naik turun dalam arah tegak lurus dengan arah gerak gelombang. Bentuk gelombang transversal tampak seperti gambar di bawah.
Berdasarkan gambar di atas, tampak bahwa gelombang merambat ke kanan pada bidang horisontal, sedangkan arah getaran naik-turun pada bidang vertikal. Garis putus-putus yang digambarkan di tengah sepanjang arah rambat gelombang menyatakan posisi setimbang medium (misalnya tali atau air). Titik tertinggi gelombang disebut puncak sedangkan titik terendah disebut lembah. Amplitudo adalah ketinggian maksimum puncak atau kedalaman maksimum lembah, diukur dari posisi setimbang. Jarak dari dua titik yang sama dan berurutan pada gelombang disebut panjang gelombang (disebut lambda – huruf yunani). Panjang gelombang juga bisa juga dianggap sebagai jarak dari puncak ke puncak atau jarak dari lembah ke lembah.
Gelombang Longitudinal
Selain gelombang transversal, terdapat juga gelombang longitudinal. Jika pada gelombang transversal arah getaran medium tegak lurus arah rambatan, maka pada gelombang longitudinal, arah getaran medium sejajar dengan arah rambat gelombang. bingung sebuah pegas. Perhatikan gambar di bawah…
Pada gambar di atas tampak bahwa arah getaran sejajar dengan arah rambatan gelombang. Serangkaian rapatan dan regangan merambat sepanjang pegas. Rapatan merupakan daerah di mana kumparan pegas saling mendekat, sedangkan regangan merupakan daerah di mana kumparan pegas saling menjahui. Jika gelombang tranversal memiliki pola berupa puncak dan lembah, maka gelombang longitudinal terdiri dari pola rapatan dan regangan. Panjang gelombang adalah jarak antara rapatan yang berurutan atau regangan yang berurutan. Yang dimaksudkan di sini adalah jarak dari dua titik yang sama dan berurutan pada rapatan atau regangan (lihat contoh pada gambar di atas).
Salah satu contoh gelombang logitudinal adalah gelombang suara di udara. Udara sebagai medium perambatan gelombang suara, merapat dan meregang sepanjang arah rambat gelombang udara. Berbeda dengan gelombang air atau gelombang tali, gelombang bunyi tidak bisa kita lihat menggunakan mata. Dirimu suka denger musik khan ? nah, coba sentuh loudspeaker ketika dirimu sedang memutar lagu. Semakin besar volume lagu yang diputar, semakin keras loudspeaker bergetar. Kalau diperhatikan secara seksama, loudspeaker tersebut bergetar maju mundur. Dalam hal ini loudspeaker berfungsi sebagai sumber gelombang bunyi dan memancarkan gelombang bunyi (gelombang longitudinal) melalui medium udara. Mengenai gelombang bunyi selengkapnya akan dipelajari pada pokok bahasan tersendiri.
Pada pembahasan di atas, sudah gurumuda jelaskan bahwa gelombang tali merupakan contoh gelombang transversal, sedangkan contoh gelombang longitudinal adalah gelombang bunyi. Lalu bagaimana dengan gelombang air ? gelombang air bukan sepenuhnya gelombang transversal atau gelombang longitudinal. Gelombang air merupakan gabungan antara gelombang transversal dan gelombang longitudinal.
\

KESIMPULANYA
Pertama, gelombang merupakan getaran yang merambat dengan laju tertentu melalui medium tertentu. Medium yang dimaksudkan di sini bisa berupa tali, air, pegas, tanah dan sebagainya. Laju getaran yang merambat dikenal dengan julukan laju perambatan alias laju gelombang (v). Laju gelombang ditentukan oleh sifat-sifat medium yang dilalui oleh gelombang.
Kedua, medium yang dilalui oleh gelombang hanya bergerak bolak balik pada posisi setimbangnya, medium tidak merambat seperti gelombang.
Ketiga, gelombang bisa terjadi jika suatu medium bergetar atau berosilasi. Suatu medium bisa bergetar atau berosilasi jika dilakukan usaha alias kerja pada medium tersebut. Dalam hal ini, ketika usaha atau kerja dilakukan pada suatu medium maka energi dipindahkan pada medium tersebut. Nah, ketika getaran merambat (getaran yang merambat disebut gelombang), energi dipindahkan dari suatu tempat ke tempat lain melalui medium tersebut. Gelombang tidak memindahkan materi atau medium yang dilaluinya, gelombang hanya memindahkan energi… perhatikan bahwa pembahasan kita sebelumnya berkaitan dengan gelombang mekanik. Karenanya jika disebutkan gelombang maka yang saya maksudkan adalah gelombang mekanik.
Gelombang Elektromagnet
Sebelumnya kita sudah mengobok2 gelombang mekanik. Nah, kalau gelombang mekanik membutuhkan medium untuk berpindah tempat alias bergentayangan dari satu tempat ke tempat lain, bagaimana dengan gelombang elektromagnet ? Untuk bergentanyangan dari satu tempat ke tempat lain, gelombang elektromagnet tidak membutuhkan medium… kok bisa ? yupz… mengenai gelombang elektromagnetik selengkapnya kita obok2 pada pembahasan mengenai gelombang elektromagnet.
Sebelumnya kita sudah mengelompokkan gelombang berdasarkan medium perambatan. Btw, gelombang juga bisa dikelompokkan berdasarkan banyaknya dimensi yang dilalui gelombang ketika bergentanyangan dari suatu tempat ke tempat lain. Berdasarkan banyaknya dimensi, gelombang bisa dikelompokkan menjadi gelombang berdimensi satu, gelombang berdimensi dua, gelombang berdimensi tiga. Gelombang tali dan gelombang pegas merupakan contoh gelombang berdimensi satu… riak air termasuk gelombang berdimensi dua. Sebaliknya gelombang bunyi dan gelombang elektromagnetik termasuk gelombang berdimensi tiga…







Pulsa Gelombang

Dirimu punya HP-kah ? Ya punya dunk gurumuda, masa ya tidak dunk… kalau pulsa, punya tidak ? Kalo punya bagi dunk sama gurumuda… hiks2… Asyik ya kalo punya hp. Tiap hari bisa nelp ato sms… lagi kangen ringan sama… langsung Isi pulsa secukupnya… satu sms baru terkirim. Stok kangen mulai berkurang, pulsa pun ikut2an berkurang… bosan sms melulu, pake nelp0n saja ah… biar deg2an, asal nelpon… lumayan, mumpung punya duit, uang jajan dipangkas saja… lagi asyik nelpon, koneksinya malah putus. Wakakak… pulsanya Abiz… huft… pulsa ini bikin sebel saja… Btw, pulsa tuh sebenarnya apa ya ? Dirimu sering beli pulsa, pulsa abiz, beli lagi, abiz lagi… tapi dirimu ngerti pulsa tidak ? Bingun ? Sama dunk
Ketika kita bicara soal pulsa HP, sebenarnya kita bicara soal gelombang elektromagnetik. Kali ini gurumuda tidak menjelaskan kepadamu bagaimana cara kerja handphone dan sejenisnya, mengenai hal ini akan kita obok2 pada episode berikutnya… gurumuda hanya menjelaskan kepadamu apa sebenarnya pulsa gelombang. Jika kita tinjau dari medium perambatan maka gelombang elektromagnetik dan gelombang transversal pada dasarnya berbeda. Walaupun demikian, gelombang elektromagnetik juga merupakan gelombang transversal… bentuknya mirip (tapi tak sama) seperti gelombang tali yang sudah gurumuda bahas dalam bagian pengertian dan jenis-jenis gelombang. Mirip tapi tak sama, ada bedanya… mengenai gelombang elektromagnetik nanti akan gurumuda ulas pada pokok bahasan tersendiri… Nah , untuk membantumu memahami pulsa gelombang transversal maka gurumuda jelaskan menggunakan tali, sebaliknya untuk pulsa gelombang longitudinal gurumuda jelaskan menggunakan pegas.… Ok, tancap gas…
Pulsa Gelombang transversal
Tataplah gambar di bawah dengan penuh kelembutan…

Misalnya dirimu memegang seutas tali pada salah satu ujung (sebelah kiri) dan menyentakan tali tersebut. Setelah tali disentakkan maka akan timbul lengkungan alias lonjakan. Lonjakan tersebut akan menjalar sepanjang tali, sebagaimana tampak pada gambar di atas. nah, lengkungan alias lonjakan yang merambat tersebut dikenal dengan julukan pulsa alias pulsa gelombang (lebih tepatnya disebut pulsa gelombang transversal).

Jika pada contoh sebelumnya ujung tali bebas, maka pada contoh itu ujung tali terikat pada sebuah penyanggah. Jika tali disentakkan maka akan timbul lengkungan alias lonjakan yang merambat sepanjang tali. Karena ujung tali dihubungkan dengan penyanggah maka lengkungan alias lonjakan tadi dipantulkan kembali ke kiri… lengkungan alias lonjakan yang merambat tersebut dikenal dengan julukan pulsa alias pulsa gelombang.
Pulsa Gelombang Longitudinal
Jika sebuah pegas ditekan secara tiba-tiba maka akan timbul suatu rapatan. Rapatan ini merambat sepanjang pegas… rapatan yang merambat ini dikenal dengan julukan pulsa alias pulsa gelombang (lebih tepatnya pulsa gelombang longitudinal). Untuk memperjelas pemahamanmu,
Dirimu sudah punya gambaran tentang pulsa khan ? Selengkapnya akan diobok2 dalam pembahasan gelombang elektromagnetik. Btw, ini pengetahuan dasar yang penting untuk membantumu memahami penjelasan selanjutnya…
Dari balik blog gurumuda mengucapkan s








Gelombang Harmonik
Pengantar
Gelombang harmonik…. Uh, istilah apalagi neh Sebelumnya gurumuda sudah membahas pulsa gelombang, kali ini gurumuda mengajakmu berkenalan dengan gelombang harmonik. Pulsa gelombang yang telah dibahas sebelumnya, misalnya pulsa gelombang transversal pada tali, biasanya timbul jika kita menggoyang atau menyentakkan tali turun naik (atau naik turun) hanya sekali… adanya sentakan yang kita berikan pada tali menyebabkan timbulnya pulsa atau denyut yang merambat sepanjang tali tersebut… nah, apabila kita menggerakan tali naik turun atau turun naik secara berulang, khususnya jika gerakan kita berupa gerak harmonik sederhana, maka akan timbul gelombang yang merambat sepanjang tali tersebut… bentuk gelombang ini sangat teratur, seperti tampak pada gambar di atas. Gelombang jenis ini dikenal dengan julukan gelombang harmonik. harmonik artinya teratur, kalo dirimu bingun dengan istilah gerak harmonik sederhana, sebaiknya pelajari materi getaran terlebih dahulu…
Untuk membantumu memahami hal ini, silahkan lakukan percobaan besar-besaran berikut… cari seutas tali… kalo dirimu tidak punya tali, pinjam saja punya tetangga setelah dirimu punya tali, pegang salah satu ujung tali… ssttt… talinya dipegang dengan erat, awas talinya kabur Jika dirimu memegang salah satu ujung tali dan menggerakannya naik turun secara teratur maka akan timbul gelombang yang merambat sepanjang tali tersebut… berbeda dengan pulsa yang cuma punya puncak saja, gelombang ini punya puncak dan lembah… untuk memperjelas, silahkan tatap gambar di bawah. Bentuknya kira2 seperti ini

Gambar di atas adalah gambar gelombang harmonik. Gelombang harmonik pada tali biasanya timbul ketika kita menggerakan salah satu ujung tali ke atas dan ke bawah secara berulang dan teratur (gerak harmonik sederhana). Gelombang harmonik memiliki bentuk fungsi sinus jika titik asal dipilih pada sumbu x, sebagaimana tampak pada gambar di bawah. Gelombang harmonik yang memiliki bentuk fungsi sinus dikenal juga dengan julukan gelombang sinusoidal…

Sebaliknya gelombang harmonik juga bisa memiliki bentuk fungsi cosinus jika titik asal dipilih pada sumbu y, sebagaimana tampak pada gambar di bawah.

Perlu diketahui bahwa ketika gelombang merambat sepanjang tali, setiap titik pada tali atau setiap bagian tali tersebut berosilasi ke atas dan ke bawah di sekitar posisi setimbangnya. Untuk kasus ini, posisi setimbang adalah garis sepanjang sumbu x. Bisa dikatakan bahwa setiap titik pada tali atau setiap bagian tali melakukan gerak harmonik sederhana… untuk membantumu memahami hal ini, silahkan tatap gambar di bawah…



Gambar di atas menunjukkan perubahan posisi salah satu titik pada tali ketika gelombang merambat sepanjang tali. Titik yang dimaksud diberi warna hitam… Tampak bahwa posisi titik berubah setiap satuan waktu. Perhatikan bahwa setiap titik atau setiap bagian tali yang lain juga mengalami perubahan posisi sebagaimana titik hitam pada gambar di atas. Jadi titik hitam yang digambarkan di atas hanya mewakili titik atau bagian tali yang lain… gerakan setiap titik pada tali atau setiap bagian tali tegak lurus terhadap panjang tali (sejajar sumbu y), sebaliknya gelombang bergerak sepanjang tali (sejajar sumbu x). Nah, ketika gelombang merambat sepanjang tali dengan laju v, setiap titik pada tali berosilasi di sekitar titik kesetimbangannya dengan frekuensi f.
Sekarang silahkan perhatikan gambar gelombang harmonik sebelumnya. Jarak dari satu puncak ke puncak berikutnya atau jarak dari satu lembah ke lembah berikutnya atau jarak dari satu titik ke titik yang bersangkutan pada pengulangan berikutnya disebut panjang gelombang (lambda). Frekuensi (f), panjang gelombang (lamda) dan laju gelombang (v) memiliki keterkaitan antara satu dengan yang lain. Selama satu periode (T = 1/f), gelombang menempuh jarak satu panjang gelombang (lambda). Untuk memahami arti kalimat ini, cermati gambar di atas perlahan-lahan. Tuh gambar yang banyak gelombangnya Dengan demikian, hubungan antara laju gelombang (v), periode (T), frekuensi (f) dan panjang gelombang (lambda) dinyatakan melalui persamaan di bawah :

Dalam pokok bahasan laju gelombang sudah dijelaskan bahwa laju gelombang transversal dan laju gelombang longitudinal ditentukan oleh sifat-sifat medium yang dilaluinya. Dengan demikian, panjang gelombang dengan sendirinya ditentukan oleh frekuensi sumber gelombang (yang dimaksudkan dengan sumber gelombang di sini adalah benda yang bergetar atau benda yang berosilasi. Setiap gelombang muncul akibat adanya benda yang bergetar. Ingat lagi pokok bahasan pengertian dan jenis-jenis gelombang. Sudah dijelaskan di sana). Semakin besar frekuensi, semakin kecil panjang gelombang sehingga hasil kali antara frekuensi dan panjang gelombang alias laju gelombang tetap sama. Jadi gelombang-gelombang dari semua frekuensi merambat dengan laju yang sama, yang berbeda cuma panjang gelombangnya saja… panjang gelombang ini ditentukan oleh frekuensi sumber gelombang. Frekuensi tuh banyaknya getaran yang terjadi selama satu detik…
Persamaan yang menyatakan hubungan antara laju gelombang, panjang gelombang dan frekuensi atau periode yang telah diturunkan sebelumnya berlaku untuk semua jenis gelombang harmonik, baik gelombang harmonik tersebut berbentuk transversal maupun longitudinal. Oya, gelombang harmonik yang terjadi pada tali atau dawai, sebagaimana dijelaskan sebelumnya hanya digunakan sebagai contoh saja. Ini tidak berarti gelombang harmonik hanya merambat melalui tali saja atau gelombang harmonik hanya berbentuk transversal. Gelombang harmonik juga bisa berbentuk longitudinal. Gelombang harmonik juga bisa merambat melalui medium lain selain tali…

Persamaan gelombang

Dalam pembahasan sebelumnya, telah dijelaskan bahwa ketika gelombang harmonik merambat sepanjang tali, setiap titik pada tali berosilasi di sekitar posisi kesetimbangannya. Hal yang sama juga berlaku ketika gelombang harmonik merambat melalui medium lain. Karena setiap titik dalam medium berosilasi di sekitar posisi kesetimbangannya maka posisi setiap titik dalam medium selalu berubah-ubah. Agar kita bisa mengetahui atau memperkirakan posisi setiap titik dalam medium selama perambatan gelombang maka kita membutuhkan konsep fungsi gelombang. Fungsi gelombang merupakan suatu fungsi yang menjelaskan posisi sebarang titik dalam medium pada suatu waktu tertentu.
Untuk membantumu memahami konsep fungsi, pahami penjelasan berikut : Jika kita mengatakan x adalah fungsi t, maka yang kita maksudkan adalah untuk setiap nilai t, ada nilai x yang sesuai. Misalnya x = At2, di mana A merupakan konstanta. Untuk menyatakan bahwa x adalah fungsi t, kadang x dalam x = At2 ditulis dalam bentuk x(t). Pahami perlahan-lahan… nah, sebelumnya sudah dijelaskan tentang konsep fungsi, sekarang giliran fungsi gelombang… untuk membantumu memahami konsep fungsi gelombang, kita tinjau gelombang pada tali…
Misalnya mula-mula seutas tali direntangkan. Apabila kita mengabaikan bentuk tali yang kendur akibat adanya gaya gravitasi yang bekerja padanya maka tali yang kita rentangkan tersebut akan tampak lurus sejajar horisontal. Ketika bentuk tali lurus sejajar horisontal, tali atau setiap titik pada tali dikatakan berada dalam posisi kesetimbangan. Kita bisa mengganggap garis lurus sepanjang tali tersebut sebagai sumbu x sistem koordinat. Untuk lebih jelasnya lihat gambar di bawah :

Perhatikan bahwa setiap titik pada tali memiliki posisi yang berbeda sepanjang sumbu x, diukur dari titik asal (titik asal atau titik acuan tuh titik yang terletak pada perpotongan antara sumbu x dan y). Apabila tali digerakkan naik turun secara teratur maka akan timbul gelombang yang merambat sepanjang tali tersebut. Ketika gelombang merambat sepanjang tali, posisi setiap titik pada arah vertikal selalu berubah. Agar dirimu lebih memahami hal ini, silahkan perhatikan titik hitam pada tiga gambar gelombang di atas. Ketika gelombang merambat sepanjang tali (hal ini diwakili oleh tiga gambar gelombang yang berbeda), tampak bahwa posisi titik hitam pada arah vertikal atau sumbu y selalu berubah-ubah. Perlu diketahui bahwa posisi titik hitam hanya berubah pada arah vertikal atau sumbu y saja, posisinya pada horisontal atau sumbu x selalu tetap. Setiap titik lain pada tali juga mempunyai nasib yang sama dengan titik hitam pada gambar di atas. Titik hitam hanya digunakan sebagai contoh saja…
Sebelumnya sudah dijelaskan bahwa setiap titik pada tali memiliki posisi yang berbeda sepanjang sumbu x, diukur dari titik asal. Nah, ketika gelombang merambat sepanjang tali, setiap titik pada tali mengalami perubahan posisi pada arah vertikal atau sumbu y. Perhatikan bahwa perubahan posisi pada arah vertikal atau sumbu y, yang dialami oleh masing-masing titik pada tali sepanjang sumbu x, berbeda-beda. Kalo dirimu bingun, baca perlahan-lahan sambil lihat gambar di atas… Dengan demikian, jika kita ingin mengetahui posisi suatu titik pada sumbu y, maka kita perlu mengetahui titik mana yang hendak ditinjau. Bagaimanapun setiap titik sepanjang sumbu x mempunyai posisi yang berbeda-beda pada sumbu y. Bisa dikatakan bahwa posisi suatu titik pada sumbu y bergantung pada posisi titik tersebut pada sumbu x (y bergantung pada x) dan juga bergantung pada waktu (t) ketika kita melihat titik tersebut. Bahasa matematisnya adalah y merupakan fungsi x dan t — y = y(x,t). Nah, y(x,t) dikenal dengan julukan fungsi gelombang… fungsi gelombang ini berguna untuk menjelaskan gelombang tersebut… Artinya jika kita mengetahui fungsi gelombang dari suatu gelombang tertentu, kita bisa mencari perpindahan sembarang titik dari posisi setimbang pada suatu waktu tertentu. Dengan mengetahui perpindahan sembarang titik ini, kita bisa mencari kecepatan atau percepatan dari sebarang titik sepanjang tali, bentuk tali atau gerakan tali pada suatu waktu tertentu.
Fungsi Gelombang Harmonik
Untuk menentukan fungsi gelombang harmonik, mari kita tinjau sebuah gelombang harmonik yang merambat atau berjalan dari kiri ke kanan sepanjang tali, sebagaimana tampak pada gambar di bawah. Banyaknya gambar gelombang hanya menunjukkan bahwa gelombang harmonik sedang merambat sepanjang tali. Perambatan gelombang ditandai dengan perubahan bentuk tali pada setiap selang waktu yang berbeda.

Gambar ini menjelaskan sebuah gelombang harmonik yang merambat dari kiri ke kanan sepanjang tali, selama satu periode (T). Dalam satu periode (t = 0 sampai t = T), gelombang harmonik merambat sejauh satu panjang gelombang (lambda).
Ketika gelombang harmonik merambat dari kiri ke kanan sepanjang tali, setiap bagian tali atau setiap titik sepanjang tali berosilasi dalam gerak harmonik sederhana di sekitar titik kesetimbangannya dengan amplitudo (A) dan frekuensi (f) yang sama. Perlu diketahui bahwa walaupun setiap titik sepanjang tali berosilasi dengan A dan f yang sama tetapi osilasi dari setiap titik tidak sejalan. Untuk memahami hal ini, perhatikan tiga titik (titik a, b dan c) pada gambar di atas. Ketiga titik tersebut hanya digunakan sebagai contoh saja. Pada saat t = 0, titik a, b dan c berhimpit dengan sumbu x atau berada pada posisi setimbang. Dalam hal ini, posisi ketiga titik tersebut pada sumbu y sama dengan nol (y = 0). Pada saat t = 2T/8, titik a dan c berada pada nilai negatif maksimum dari sumbu y, sedangkan titik b berada pada nilai positif maksimum dari sumbu y. Dengan kata lain, titik a dan c berada pada lembah gelombang sedangkan titik b berada pada puncak gelombang. Pada saat t = 4T/8, titik a, b dan c kembali berada pada posisi setimbangnya. Pada saat t = 6T/8, titik a dan c berada pada nilai positif maksimum dari sumbu y, sedangkan titik b berada pada nilai negatif maksimum dari sumbu y. Dengan kata lain, titik a dan c berada pada puncak gelombang sedangkan titik b berada pada lembah gelombang. Pada saat t = T, titik a, b dan c kembali berada pada posisi setimbangnya atau berimpit dengan sumbu x.
Perhatikan bahwa ketika gelombang merambat sepanjang tali, gerakan titik a dan b atau gerakan titik b dan c berbeda selangnya satu sama lain. Sebaliknya gerakan titik a dan c memiliki selang yang sama. Kita menamakan perbedaan ini sebagai selisih fase atau beda fase. Titik a dan b dalam gambar di atas dikatakan memiliki beda fase sebesar setengah siklus atau setengah panjang gelombang. Demikian juga titik b dan c dikatakan memiliki beda fase sebesar setengah siklus atau setengah panjang gelombang (setengah lambda). Sebaliknya titik a dan c sefase atau memiliki fase yang sama (beda fase nol). Karena jarak dari titik a dan c adalah satu panjang gelombang (lambda) maka kita bisa mengatakan bahwa setiap titik yang berjarak satu panjang gelombang pasti memiliki fase yang sama atau sefase atau bergerak dalam satu siklus.
Sekarang mari kita turunkan fungsi gelombang harmonik. Kita tinjau sebuah titik yang pada mulanya berada di titik acuan (x = 0), sebagaimana ditunjukkan dalam gambar di atas. Dalam pokok bahasan persamaan posisi, kecepatan dan percepatan pada gerak harmonik sederhana (materi getaran), kita sudah menurunkan sebuah persamaan yang menyatakan posisi suatu titik yang melakukan gerak harmonik sederhana. Persamaan ini diturunkan dengan meninjau keterkaitan antara gerak harmonik sederhana dan gerak melingkar beraturan. Sebaiknya pelajari terlebih dahulu materi getaran untuk memudahkan pemahamanmu… karena kita meninjau titik yang pada mulanya berada di titik acuan (gerakan gelombang dimulai dari titik acuan) maka kita gunakan persamaan ini :

Titik tersebut berosilasi dengan amplitudo A, frekuensi f dan frekuensi sudut (omega). Kalau dirimu bingun dengan istilah frekuensi sudut, silahkan pelajari lagi gerak melingkar. Pahami saja keterkaitan antara frekuensi (rpm) dan kelajuan sudut… Perhatikan bahwa titik yang kita tinjau berada di x = 0 sehingga dalam persamaan di atas ditulis notasi y(x = 0, t). Jadi notasi y(x = 0, t) mengingatkan kita bahwa gerakan titik tersebut merupakan kasus khusus dari fungsi gelombang y(x, t) yang menjelaskan keseluruhan gelombang.
Berdasarkan persamaan di atas, bisa dikatakan bahwa bahwa pada saat t = 0, titik yang berada di x = 0 memiliki perpindahan pada sumbu y sebesar nol (y = 0) dan titik tersebut bergerak dalam arah y positif seiring bertambahnya waktu (titik bergerak ke atas menuju puncak gelombang seiring bertambahnya waktu). Dari mana kita tahu bahwa titik tersebut bergerak dalam arah y positif atau bergerak ke atas ? guampang… amplitudo (A) dalam persamaan di atas bernilai positif. Kalo amplitudo bernilai negatif (-A) berarti titik bergerak dalam arah y negatif atau bergerak ke bawah… biar paham, bandingkan dengan gambar sebelumnya…
Seiring bertambahnya waktu, gelombang berjalan dari x = 0 ke titik lain sepanjang sumbu x yang berada di sebelah kanan titik acuan. Karenanya pada waktu t, gerakan titik lain sepanjang sumbu x positif sama seperti gerakan titik yang berada di x = 0 pada waktu sebelumnya (t – t’ = t – x/v). v = s/t’ = x/t’ — t’ = x/v, di mana x merupakan jarak suatu titik dari titik acuan, sedangkan v merupakan laju gelombang yang berjalan sepanjang tali. Untuk menghitung perpindahan suatu titik yang berjarak x dari titik acuan pada waktu t, kita bisa menggantikan t dalam persamaan sebelumnya dengan t – x/v :
Persamaan 1 bisa diobok-obok ke dalam bentuk lain :

Dari persamaan 2, kita bisa mendefinisikan suatu besaran baru yang dikenal dengan julukan bilangan gelombang (k) :

Persamaan 2 bisa ditulis lagi dalam bentuk seperti ini :

Persamaan 1, persamaan 2 dan persamaan 3 merupakan tiga bentuk fungsi gelombang harmonik yang bergerak dalam arah x positif alias bergerak ke kanan. Dalam menyelesaikan soal, anda bisa menggunakan salah satu dari ketiga bentuk fungsi gelombang sesuai dengan kebutuhan
Kita bisa menurunkan persamaan yang menyatakan hubungan antara frekuensi sudut (omega), laju gelombang (v) dan bilangan gelombang (k) :

Persamaan ini menjelaskan hubungan antara frekuensi sudut (omega), laju gelombang (v) dan bilangan gelombang (k).
Grafik fungsi gelombang y(x, t)
Sebelumnya kita sudah menurunkan persamaan yang menyatakan bentuk fungsi gelombang harmonik yang berjalan dalam arah sumbu x positif (gelombang berjalan ke kanan). Berdasarkan persamaan tersebut, kita bisa menggambar grafik yang menjelaskan perpindahan titik sepanjang tali pada arah vertikal atau sumbu y diukur dari posisi kesetimbangan atau sumbu x, pada suatu waktu tertentu. Untuk mengambarkan grafik y(x, t) terhadap x, kita pilih t = 0. Persamaan sebelumnya bisa dioprek menjadi seperti ini :

Jika gelombang harmonik tersebut berbentuk transversal yang berjalan sepanjang tali dalam arah sumbu x positif, maka bentuk gelombang dan bentuk tali tampak seperti gambar di bawah.

Untuk mengambarkan grafik y(x, t) terhadap t, kita pilih x = 0. Persamaan sebelumnya bisa dioprek menjadi seperti ini :


Grafik ini menunjukkan posisi sumbu y dari suatu titik yang terletak di x = 0, sebagai fungsi waktu. Perhatikan bahwa grafik ini tidak menggambarkan bentuk gelombang atau bentuk tali.
Fungsi gelombang yang sudah diturunkan sebelumnya menyatakan gelombang harmonik yang berjalan dalam arah x positif (gelombang berjalan ke kanan). Kita bisa mengubah fungsi gelombang tersebut untuk menyatakan gelombang harmonik yang berjalan dalam arah x negatif (gelombang berjalan ke kiri). Seiring bertambahnya waktu, gelombang berjalan dari x = 0 ke titik lain sepanjang sumbu x yang berada di sebelah kiri titik acuan. Karenanya pada waktu t, gerakan titik lain sepanjang sumbu x negatif sama seperti gerakan titik yang berada di x = 0 pada waktu sesudahnya (t + t’ = t + x/v). Jadi kita hanya perlu mengganti tanda negatif dengan positif.
Untuk gelombang yang berjalan dalam arah x negatif, bentuk fungsi gelombangnya dinyatakan oleh tiga persamaan di bawah :


Persamaan Gelombang
Fungsi gelombang yang sudah kita turunkan sebelumnya bisa kita gunakan untuk menentukan laju dan besar percepatan suatu titik tertentu pada tali ketika gelombang transversal merambat melalui tali tersebut. Btw, jangan kacaukan laju suatu titik tertentu pada tali dengan laju perambatan gelombang. Ketika gelombang merambat sepanjang tali, setiap titik pada tali berosilasi di sekitar posisi kesetimbangannya. Dalam hal ini arah gerakan atau arah kecepatan setiap titik tersebut tegak lurus arah perambatan atau arah kecepatan gelombang. Misalnya kalau gelombang bergerak ke kanan (arah kecepatan gelombang ke kanan) maka arah gerakan atau arah kecepatan titik pada tali ke atas atau ke bawah. Untuk membedakannya dengan laju perambatan gelombang, maka laju titik kita beri simbol vy.
Untuk menentukan laju suatu titik tertentu pada tali, kita menghitung turunan parsial dari fungsi gelombang y(x, t) terhadap waktu t dengan mempertahankan nilai x konstan. Pekerjaan ini bisa diselesaikan menggunakan turunan parsial… disebut parsial karena yang diturunkan hanya sebagian saja (parsial = sebagian). Fungsi y(x, t) punya dua variabel yakni x dan t. Nah, kita ingin mencari laju suatu titik tertentu pada tali sehingga x kita pertahankan agar konstan, yang kita hitung cuma turunan y(x, t) terhadap waktu t. Terlebih dahulu kita tulis salah satu bentuk fungsi gelombang yang sudah diobok2 sebelumnya…

Persamaan 1 bisa kita gunakan untuk menentukan laju sebarang titik pada tali, ketika gelombang merambat sepanjang tali tersebut. Jika laju suatu titik tertentu pada tali merupakan turunan parsial pertama maka besar percepatan merupakan turunan parsial kedua dari y(x, t) terhadap t :

Persamaan 2 bisa kita gunakan untuk menentukan besar percepatan sebarang titik pada tali, ketika gelombang merambat sepanjang tali tersebut. Dari persamaan ini tampak bahwa besar percepatan suatu titik sama dengan hasil kali antara negatif omega kuadrat dengan besar perpindahan titik tersebut.
Sebelumnya kita sudah menghitung turunan parsial dari fungsi gelombang y(x, t) terhadap waktu t dengan mempertahankan nilai x konstan. Kali ini kita menghitung turunan parsial dari fungsi gelombang y(x, t) terhadap waktu x dengan mempertahankan nilai t konstan. Apabila sebelumnya kita menentukan laju dan besar percepatan suatu titik tertentu pada tali maka kali ini kita meninjau bentuk tali pada suatu saat tertentu. Terlebih dahulu kita tulis lagi salah satu bentuk fungsi gelombang yang sudah diobok2 sebelumnya…

Persamaan 3 menyatakan kemiringan tali pada suatu saat tertentu. Jika kemiringan tali pada suatu saat tertentu merupakan turunan parsial pertama dari y(x, t) terhadap x, maka turunan parsial kedua dari y(x, t) terhadap x menyatakan kelengkungan tali :

Persamaan 4 menyatakan kelengkungan tali pada suatu saat tertentu. Pahami perlahan-lahan… kalau dirimu bingun, pelajari kalkulus terlebih dahulu. Biar lebih mudah paham, ingat saja : turunan sin adalah cos, turunan cos adalah –sin, turunan –sin adalah –cos, turunan –cos adalah sin. Kalo integral tinggal dibalik saja…
Nah, dengan melihat keterkaitan antara frekuensi sudut (omega), laju perambatan gelombang (v) serta bilangan gelombang (k) dalam persamaan omega = vk sebagaimana telah kita turunkan sebelumnya, maka kita bisa menyatukan persamaan 2 dan persamaan 4 ke dalam sebuah persamaan tunggal :

Kita kawinkan kedua persamaan ini :

Hasil akhir yang kita peroleh ini dikenal dengan julukan persamaan gelombang. Persamaan gelombang merupakan salah satu persamaan terpenting dalam fisika. Bilamana persamaan ini muncul dalam perhitungan kita maka kita bisa meramalkan bahwa terdapat suatu gelombang yang merambat sepanjang sumbu x dengan laju v.
Sebelumnya saya menurunkan persamaan gelombang menggunakan fungsi gelombang y(x, t) = A sin (omega t – kx). Sebenarnya kita juga bisa menggunakan y(x, t) = A sin (omega t + kx). Hasilnya sama saja… Dirimu bisa mencobanya…

Dirimu pernah mandi di laut ? yang gurumuda maksudkan adalah ketika air laut sedang bergelombang. Seandainya pernah, dirimu pasti pernah merasa terhempas ketika diterpa gelombang laut… Mengapa tubuh kita terhempas ketika diterpa gelombang laut ? Apabila dirimu tinggal di kota dan sering mandi di kolam renang, coba lakukan percobaan berikut. Guncangkan tanganmu di dalam air kolam sampai air kolam tersebut bergelombang. Ketika air kolam menjadi bergelombang, apakah dirimu merasakan dorongan yang ditimbulkan air tersebut ? walaupun efeknya kecil, gurumuda yakin dirimu pasti merasakan dorongan air kolam…
Kalo dirimu belum pernah mandi di laut atau di kolam renang, coba lakukan percobaan berikut… cari seutas tali yang agak panjang… minta bantuan seorang teman untuk menggerakan salah satu ujung tali naik turun, sehingga tali tersebut bergelombang… nah, dirimu berdiri di ujung tali yang lain. Usahakan agar dirimu berdiri tepat pada ujung tali (talinya jangan dipegang, dibiarkan saja di lantai atau tanah). Ketika temanmu menggerakkan tali dengan kuat, pasti akan terasa sakit jika salah satu ujung tali mengenai tubuhmu… mengapa tubuhmu bisa terasa sakit ?
Penjelasan panjang lebar di atas hanya mau menunjukkan kepadamu bahwa setiap gelombang selalu membawa energi dari satu tempat ke tempat lain. Ketika mandi di laut, tubuh kita terhempas ketika diterpa gelombang laut karena terdapat energi pada gelombang laut. Energi yang terdapat pada gelombang laut bisa bersumber dari angin dkk. Ketika dirimu mengguncangkan tangan di dalam air kolam, sebenarnya dirimu sedang memindahkan energi pada air. Ingat lagi teorema kerja-energi. Ketika dirimu mengguncangkan tangan di dalam air, sebenarnya dirimu mendorong atau memberi gaya dorong pada air. Adanya dorongan menyebabkan air bergerak. Perhatikan bahwa arah gerakan air pasti searah dengan arah doronganmu… karena air bergerak atau mengalami perpindahan akibat adanya gaya dorong yang dirimu berikan maka bisa dikatakan bahwa dirimu melakukan usaha alias kerja pada air. Pelajari lagi materi usaha dan energi kalo dirimu lupa
Ketika dirimu melakukan kerja pada air, energi berpindah dari dirimu menuju air… energi tersebut selanjutnya dipindahkan dari satu tempat ke tempat lain selama perambatan gelombang dalam air… dirimu bisa terhempas atau merasakan efek dorongan ketika gelombang mengenaimu… ingat ya, energi merupakan kemampuan untuk melakukan kerja dan gelombang merupakan getaran yang merambat… Dirimu bisa terhempas karena setiap molekul air yang bergetar melakukan usaha alias kerja padamu… Usaha alias kerja bisa terjadi jika ada gaya, karenanya bisa dikatakan bahwa molekul-molekul air yang sedang berosilasi memberikan gaya dorong alias mendorong-dorong dirimu
Hal yang sama terjadi ketika gelombang merambat melalui tali. Ketika temanmu menggerakkan tali naik turun (temanmu mendorong tali ke atas dan ke bawah), pada saat yang sama temanmu melakukan usaha alias kerja pada tali yang dipegangnya. Tentu saja energi berpindah dari temanmu menuju tali… ketika bagian tali yang digerakkan oleh temanmu bergerak ke atas dan ke bawah, bagian tali yang bergerak tersebut akan mendorong temannya yang ada disampingnya… temannya tentu bergerak. temannya ikut2an mendorong temannya yang ada di samping… demikian seterusnya. Jadi selama setiap bagian tali bergerak naik turun alias berosilasi di sekitar posisi setimbangnya, setiap bagian tali tersebut melakukan usaha alias kerja pada temannya. Pada saat yang sama energi berpindah dari satu bagian tali ke bagian tali yang lain… ketika ujung tali mengenai tubuhmu, tubuhmu akan terasa sakit… tubuhmu bisa sakit karena ujung tali tersebut mencoba melakukan usaha alias kerja padamu… Dalam hal ini, ujung tali tersebut memberikan gaya dorong pada tubuhmu… gaya dorong yang diberikan oleh ujung tali pada tubuhmu berlangsung selama selang waktu yang sangat singkat (gaya impuls) sehingga tubuhmu terasa sakit… ingat lagi materi impuls dan momentum.
Penjelasan gurumuda sebelumnya bersifat kualitatif alias tidak pake rumus segala… kali ini kita mencoba mengobok2 rumus berkaitan dengan energi yang dipindahkan selama perambatan gelombang harmonik melalui medium tertentu. Sebagaimana telah dijelaskan sebelumnya, gelombang merupakan getaran yang merambat… karenanya jika kita membahas gelombang maka kita tidak bisa memisahkan diri dari getaran. Demikian juga jika kita membahas gelombang harmonik maka kita tidak bisa memisahkan diri dari gerak harmonik sederhana. Keduanya punya kaitan erat, termasuk persamaan alias rumus2 yang kita gunakan…
Dalam pokok bahasan energi Gerak Harmonik Sederhana (materi getaran), kita sudah mempelajari bahwa energi total yang dimiliki oleh suatu benda yang berosilasi di ujung pegas dinyatakan melalui persamaan :
di mana A adalah amplitudo, sedangkan k adalah konstanta gaya (bukan bilangan gelombang). Kita bisa menurunkan persamaan konstanta gaya (k) dari persamaan periode GHS :

Kita gantikan k da
m persamaan Energi GHS dengan k pada persamaan di atas :
Sebagai contoh untuk meninjau energi yang dipindahkan selama perambatan gelombang, kita tinjau gelombang harmonik yang berbentuk transversal yang merambat melalui tali. Perhatikan gambar di bawah :

Tali bisa dianggap terdiri dari potongan2 kecil, di mana masing2 potongan tali tersebut bermassa delta m. Ketika gelombang merambat melalui tali, setiap bagian tali atau setiap potongan tali melakukan gerak harmonik sederhana. Dengan demikian, setiap potongan tali memiliki energi yang dinyatakan melalui persamaan : delta x bisa dianggap sebagai jarak yang ditempuh gelombang selama selang waktu delta t. Karenanya delta x bisa dinyatakan dalam persamaan :
Di mana v merupakan laju perambatan gelombang. Kita masukan persamaan ini ke dalam persamaan energi :

Berdasarkan persamaan ini tampak bahwa energi yang dibawa oleh gelombang berbanding lurus alias sebanding dengan kuadrat frekuensi (f2) dan kuadrat amplitudo (A2) dan laju gelombang (v).
Daya merupakan laju perpindahan energi. Daya yang dipindahkan oleh gelombang harmonik adalah :

Keterangan :

Intensitas Gelombang
Sebelumnya kita sudah membahas energi dan daya yang dibawa oleh gelombang harmonik ketika merambat melalui tali. Jika kita berbicara mengenai gelombang tiga dimensi (gelombang yang merambat melalui ruang, misalnya gelombang bunyi atau gelombang gempa) maka lebih penting jika kita membahas Intensitas (I) gelombang.
Intensitas (I) gelombang merupakan daya yang dibawa oleh gelombang melalui satu satuan luas yang tegak lurus dengan arah perambatan gelombang. Untuk membantu kita menurunkan persamaan intensitas gelombang, perhatikan gambar di bawah :
Kita tulis lagi persamaan energi sebelumnya :

Keterangan :

Daya yang dipindahkan oleh gelombang harmonik adalah :

Intensitas (I) gelombang :
Dari persamaan ini tampak bahwa intensita
sebanding dengan kuadrat amplitudo, kuadrat frekuensi sudut, laju dan massa je

Tidak ada komentar:

Posting Komentar